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Increasing prevalence of Medical Al
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Al in Healthcare — Key Domains

Diagnostic Al

Clinical Decision Support

Administrative & Operational Al

Medical Education
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Imaging analysis, autonomous screening &
diagnostic tools

EMR, risk predictions, treatment
recommendations

Coding, billing, scheduling, supply chain

Al-based tutoring, simulations
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Problems with Al — Black Box & Explainability
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Explainability: the concept that a machine

learning model and its output can be explained

in a way that “makes sense” to a human being
Narla, Akhila, et al. "Automated

classification of skin lesions: from pixels
to practice." Journal of Investigative
Dermatology 138.10 (2018): 2108-
2110.
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Large-Language Models (LLMs)
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Humans cannot distinguish between
Al and human-generated text
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Al shows high diagnostic accuracy
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Figure 3 | Specialist-rated top-k diagnostic accuracy. AMIE and PCPs top-k DDy accuracy are compared across 149
scenarios with respect to the ground truth diagnosis (a] and all diagnoses in the accepted differential (b). Bootstrapping
(n=10.000) confirms all top-k differences between AMIE and PCP DDx accuracy are significant with p < 0.05 after FDR

McDUff et al., Preprint
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Large Language Models (LLMs)

* Answers the question: What is the ‘probability of (text)’

* For example:

* The students opened their

* How does an LLM learn?
* Ingestion of a large corpus of text

=>LLM outputs depend on the training data that was used
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minds

* Limits, specializes, or biases the knowledge

books

shoes
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Bias

=>» Setting up guardrails and constant monitoring is required

LLMs reflect the biases of their training data (Hofman et al., 2024)

May propagate medical bias in subtle ways

b d
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Al generates covertly racist decisions about people
based on their dialect

Valentin Hofmann M_. Pratyusha Ria Kalluri, Dan Jurafsky & Sharese King ]

Nature 633, 147-154 (2024) | Cite this article
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Abstract

Hundreds of millions of people now interact with language models, with uses ranging from
help with writingl2 to informing hiring decisions2. However, these language models are
known to perpetuate systematic racial prejudices, making their judgements biased in
problematic ways about groups such as African Americans®22Z, Although previous research
has focused on overt racism in language models, social scientists have argued that racism
with a more subtle character has developed over time, particularly in the United States after
the civil rights movement22, It is unknown whether this covert racism manifests in language
models. Here, we demonstrate that language models embody covert racism in the form of
dialect prejudice, exhibiting raciolinguistic stereotypes about speakers of African American
English (AAE) that are more negative than any human stereotypes about African Americans

ever experimentally recorded. By contrast, the language models” overt stereotypes about
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Bias in Al Development & Application ..
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Suresh, H., & Guttag, J. (2021). A framework for understanding sources of harm throughout the machine
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Societal Bias
Label Bias

Aggregation Bias

Learning Bias

Representation Bias

Evaluation Bias

Human Use Bias
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Sources of Al Bias in Medical Systems |

Geisel

Historical Bias: Al trained on past medical data perpetuates existing healthcare disparities a o of Mdicine
attitudes C§]¢ o
« Example: Al trained on historical data may underestimate pain severity in Black patients, e —

reflecting decades of documented undertreatment of pain in minority populations e

Representation Bias: Underrepresentation of certain patient populations in training data

« Minority groups, pregnant patients, elderly often < 5% of datasets

* Models perform poorly on underrepresented groups

» Example: Skin cancer detection Al trained primarily on light-skinned patients misses
melanomas in dark-skinned patients at 3x higher rates

Measurement Bias: Clinical proxies measured differently across patient groups

» "Diagnosed with condition" # "Has condition" due to diagnostic disparities

« Example: Women are 50% less likely to be diagnosed with heart disease despite similar
symptoms, so Al using "diagnosed MI" as training data underdetects cardiac events in
women

Aggregation Bias: One-size-fits-all models ignore population differences

« Same symptoms present differently across demographics

» Single model may not capture diverse disease presentations

« Example: Heart attack prediction models trained on mixed populations miss that women
often present with jaw pain and nausea rather than classic chest pain seen in men
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Learning & Evaluation Bias: Models optimized for overall accuracy may have severe
disparities in subgroup performance

« Standard benchmarks often lack diversity, hiding real-world failures N -
« Example: Chest X-ray Al shows 95% accuracy on standard datasets but has 40% higher N

false negative rates for detecting pneumonia in Black patients

Deployment Bias: Gap between intended vs actual clinical use

» Risk assessment tools designed for one purpose used for different decisions

« Automation bias: Over-reliance on Al recommendations

« Example: Al designed to flag high-risk diabetic patients for preventive care instead used to
deny insurance coverage, disproportionately affecting minority communities
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Mitigation Strategies

Ensure diverse, representative training datasets

Test performance across all patient subgroups

3. Choose appropriate clinical proxies and measurement
methods

4. Design for specific use cases with clear deployment

guidelines

N =

=>»Bias can enter at any stage from data collection through
deployment and requires vigilance throughout the Al
lifecycle

=>Physicians are key partners in protecting patient’s
safety when Al is used
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Al AND BIAS
KEY MITIGATION STRATEGIES

* Ensure diverse, representative
training datasets :

* Test performance across all
patient subgroups

> Choose appropriate clinical
proxies and measurement
methods

* Design for specific use cases
with clear deployment
guidelines

"We’ve narrowed the bias down to
every decision it makes."
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What to Ask When Evaluating an Al Tool ™"
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Al models can unintentionally amplify existing healthcare disparities

Clinicians are critical in identifying inequitable patterns in real-world use

=» Remember, Equity is Clinical Quality!

Subgroup Performance

“Does the model perform equally well across race, gender,
age, and language groups?”

Validation Across Populations

“Was the model tested on diverse patient populations
similar to ours?”

Bias Mitigation Strategies

“What methods were used to detect and reduce bias in
training or deployment?”

Transparency & Accountability

“Can | see the breakdown of performance by demographic
group?”

“Who monitors for bias post-deployment, and how are
issues addressed?”
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The Importance of a “Human In The Loop”

Medical History Inquiry

Decision
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Calls for Al & Digital Health Literacy for Medical Trainees

What are the top two topics that medical schools should focus on to prepare students to succeed?
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Geisel Launches Al-focused
Curriculum to Train Digital
Health Leaders

When medical student Soo Hwan (Soo) Park "25 came to Geisel School
of Medicine, he noticed that the medical curriculum did not include
courses involving digital health or the use of artificial intelligence (Al)

models in patient care—and it concerned him.
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- Thanks to Amanda Albright for a comprehensive review of the literature
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